Copied to
clipboard

G = C3×C42⋊S3order 288 = 25·32

Direct product of C3 and C42⋊S3

direct product, non-abelian, soluble, monomial

Aliases: C3×C42⋊S3, (C4×C12)⋊2S3, C42⋊C32C6, (C2×C6).1S4, C22.(C3×S4), C421(C3×S3), (C3×C42⋊C3)⋊6C2, SmallGroup(288,397)

Series: Derived Chief Lower central Upper central

C1C42C42⋊C3 — C3×C42⋊S3
C1C22C42C42⋊C3C3×C42⋊C3 — C3×C42⋊S3
C42⋊C3 — C3×C42⋊S3
C1C3

Generators and relations for C3×C42⋊S3
 G = < a,b,c,d,e | a3=b4=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=c, dcd-1=b-1c-1, ece=b, ede=d-1 >

3C2
12C2
16C3
32C3
3C4
3C4
6C22
6C4
3C6
12C6
16S3
16C32
3D4
3C2×C4
3Q8
6C2×C4
6C8
6D4
3C12
3C12
4A4
6C12
6C2×C6
8A4
16C3×S3
3M4(2)
3C4○D4
3C2×C12
3C3×D4
3C3×Q8
4S4
6C2×C12
6C24
6C3×D4
4C3×A4
3C4≀C2
2C42⋊C3
3C3×M4(2)
3C3×C4○D4
4C3×S4
3C3×C4≀C2

Character table of C3×C42⋊S3

 class 12A2B3A3B3C3D3E4A4B4C4D6A6B6C6D8A8B12A12B12C12D12E12F12G12H24A24B24C24D
 size 131211323232336123312121212333366121212121212
ρ1111111111111111111111111111111    trivial
ρ211-111111111-111-1-1-1-1111111-1-1-1-1-1-1    linear of order 2
ρ3111ζ32ζ3ζ32ζ311111ζ32ζ3ζ32ζ311ζ3ζ32ζ3ζ32ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ4111ζ3ζ32ζ3ζ3211111ζ3ζ32ζ3ζ3211ζ32ζ3ζ32ζ3ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ511-1ζ32ζ3ζ32ζ31111-1ζ32ζ3ζ6ζ65-1-1ζ3ζ32ζ3ζ32ζ32ζ3ζ6ζ65ζ65ζ65ζ6ζ6    linear of order 6
ρ611-1ζ3ζ32ζ3ζ321111-1ζ3ζ32ζ65ζ6-1-1ζ32ζ3ζ32ζ3ζ3ζ32ζ65ζ6ζ6ζ6ζ65ζ65    linear of order 6
ρ722022-1-1-12220220000222222000000    orthogonal lifted from S3
ρ8220-1--3-1+-3ζ6ζ65-12220-1--3-1+-30000-1+-3-1--3-1+-3-1--3-1--3-1+-3000000    complex lifted from C3×S3
ρ9220-1+-3-1--3ζ65ζ6-12220-1+-3-1--30000-1--3-1+-3-1--3-1+-3-1+-3-1--3000000    complex lifted from C3×S3
ρ1033133000-1-1-113311-1-1-1-1-1-1-1-111-1-1-1-1    orthogonal lifted from S4
ρ1133-133000-1-1-1-133-1-111-1-1-1-1-1-1-1-11111    orthogonal lifted from S4
ρ1233-1-3+3-3/2-3-3-3/2000-1-1-1-1-3+3-3/2-3-3-3/2ζ65ζ611ζ6ζ65ζ6ζ65ζ65ζ6ζ65ζ6ζ32ζ32ζ3ζ3    complex lifted from C3×S4
ρ1333-1-3-3-3/2-3+3-3/2000-1-1-1-1-3-3-3/2-3+3-3/2ζ6ζ6511ζ65ζ6ζ65ζ6ζ6ζ65ζ6ζ65ζ3ζ3ζ32ζ32    complex lifted from C3×S4
ρ14331-3+3-3/2-3-3-3/2000-1-1-11-3+3-3/2-3-3-3/2ζ3ζ32-1-1ζ6ζ65ζ6ζ65ζ65ζ6ζ3ζ32ζ6ζ6ζ65ζ65    complex lifted from C3×S4
ρ15331-3-3-3/2-3+3-3/2000-1-1-11-3-3-3/2-3+3-3/2ζ32ζ3-1-1ζ65ζ6ζ65ζ6ζ6ζ65ζ32ζ3ζ65ζ65ζ6ζ6    complex lifted from C3×S4
ρ163-1133000-1+2i-1-2i1-1-1-111-ii-1+2i-1+2i-1-2i-1-2i11-1-1i-ii-i    complex lifted from C42⋊S3
ρ173-1133000-1-2i-1+2i1-1-1-111i-i-1-2i-1-2i-1+2i-1+2i11-1-1-ii-ii    complex lifted from C42⋊S3
ρ183-1-133000-1+2i-1-2i11-1-1-1-1i-i-1+2i-1+2i-1-2i-1-2i1111-ii-ii    complex lifted from C42⋊S3
ρ193-1-133000-1-2i-1+2i11-1-1-1-1-ii-1-2i-1-2i-1+2i-1+2i1111i-ii-i    complex lifted from C42⋊S3
ρ203-11-3-3-3/2-3+3-3/2000-1-2i-1+2i1-1ζ6ζ65ζ32ζ3i-i43ζ3343ζ32324ζ334ζ3232ζ32ζ3ζ6ζ65ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    complex faithful
ρ213-1-1-3+3-3/2-3-3-3/2000-1+2i-1-2i11ζ65ζ6ζ65ζ6i-i4ζ32324ζ3343ζ323243ζ33ζ3ζ32ζ3ζ32ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    complex faithful
ρ223-1-1-3-3-3/2-3+3-3/2000-1+2i-1-2i11ζ6ζ65ζ6ζ65i-i4ζ334ζ323243ζ3343ζ3232ζ32ζ3ζ32ζ3ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    complex faithful
ρ233-11-3+3-3/2-3-3-3/2000-1-2i-1+2i1-1ζ65ζ6ζ3ζ32i-i43ζ323243ζ334ζ32324ζ33ζ3ζ32ζ65ζ6ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    complex faithful
ρ243-11-3-3-3/2-3+3-3/2000-1+2i-1-2i1-1ζ6ζ65ζ32ζ3-ii4ζ334ζ323243ζ3343ζ3232ζ32ζ3ζ6ζ65ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    complex faithful
ρ253-11-3+3-3/2-3-3-3/2000-1+2i-1-2i1-1ζ65ζ6ζ3ζ32-ii4ζ32324ζ3343ζ323243ζ33ζ3ζ32ζ65ζ6ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    complex faithful
ρ263-1-1-3+3-3/2-3-3-3/2000-1-2i-1+2i11ζ65ζ6ζ65ζ6-ii43ζ323243ζ334ζ32324ζ33ζ3ζ32ζ3ζ32ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    complex faithful
ρ273-1-1-3-3-3/2-3+3-3/2000-1-2i-1+2i11ζ6ζ65ζ6ζ65-ii43ζ3343ζ32324ζ334ζ3232ζ32ζ3ζ32ζ3ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    complex faithful
ρ286-206600022-20-2-200002222-2-2000000    orthogonal lifted from C42⋊S3
ρ296-20-3+3-3-3-3-300022-201--31+-30000-1--3-1+-3-1--3-1+-31--31+-3000000    complex faithful
ρ306-20-3-3-3-3+3-300022-201+-31--30000-1+-3-1--3-1+-3-1--31+-31--3000000    complex faithful

Smallest permutation representation of C3×C42⋊S3
On 36 points
Generators in S36
(1 9 2)(3 6 11)(4 8 5)(7 10 12)(13 32 24)(14 29 21)(15 30 22)(16 31 23)(17 26 34)(18 27 35)(19 28 36)(20 25 33)
(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 6 7 5)(2 3 12 8)(4 9 11 10)(13 16 15 14)(21 24 23 22)(29 32 31 30)
(1 32 28)(2 13 19)(3 14 18)(4 23 33)(5 31 25)(6 29 27)(7 30 26)(8 16 20)(9 24 36)(10 22 34)(11 21 35)(12 15 17)
(1 25)(2 20)(3 17)(4 36)(5 28)(6 26)(7 27)(8 19)(9 33)(10 35)(11 34)(12 18)(13 16)(14 15)(21 22)(23 24)(29 30)(31 32)

G:=sub<Sym(36)| (1,9,2)(3,6,11)(4,8,5)(7,10,12)(13,32,24)(14,29,21)(15,30,22)(16,31,23)(17,26,34)(18,27,35)(19,28,36)(20,25,33), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,6,7,5)(2,3,12,8)(4,9,11,10)(13,16,15,14)(21,24,23,22)(29,32,31,30), (1,32,28)(2,13,19)(3,14,18)(4,23,33)(5,31,25)(6,29,27)(7,30,26)(8,16,20)(9,24,36)(10,22,34)(11,21,35)(12,15,17), (1,25)(2,20)(3,17)(4,36)(5,28)(6,26)(7,27)(8,19)(9,33)(10,35)(11,34)(12,18)(13,16)(14,15)(21,22)(23,24)(29,30)(31,32)>;

G:=Group( (1,9,2)(3,6,11)(4,8,5)(7,10,12)(13,32,24)(14,29,21)(15,30,22)(16,31,23)(17,26,34)(18,27,35)(19,28,36)(20,25,33), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,6,7,5)(2,3,12,8)(4,9,11,10)(13,16,15,14)(21,24,23,22)(29,32,31,30), (1,32,28)(2,13,19)(3,14,18)(4,23,33)(5,31,25)(6,29,27)(7,30,26)(8,16,20)(9,24,36)(10,22,34)(11,21,35)(12,15,17), (1,25)(2,20)(3,17)(4,36)(5,28)(6,26)(7,27)(8,19)(9,33)(10,35)(11,34)(12,18)(13,16)(14,15)(21,22)(23,24)(29,30)(31,32) );

G=PermutationGroup([[(1,9,2),(3,6,11),(4,8,5),(7,10,12),(13,32,24),(14,29,21),(15,30,22),(16,31,23),(17,26,34),(18,27,35),(19,28,36),(20,25,33)], [(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,6,7,5),(2,3,12,8),(4,9,11,10),(13,16,15,14),(21,24,23,22),(29,32,31,30)], [(1,32,28),(2,13,19),(3,14,18),(4,23,33),(5,31,25),(6,29,27),(7,30,26),(8,16,20),(9,24,36),(10,22,34),(11,21,35),(12,15,17)], [(1,25),(2,20),(3,17),(4,36),(5,28),(6,26),(7,27),(8,19),(9,33),(10,35),(11,34),(12,18),(13,16),(14,15),(21,22),(23,24),(29,30),(31,32)]])

Matrix representation of C3×C42⋊S3 in GL3(𝔽13) generated by

300
030
003
,
500
050
0012
,
500
0120
005
,
009
900
090
,
1200
0010
040
G:=sub<GL(3,GF(13))| [3,0,0,0,3,0,0,0,3],[5,0,0,0,5,0,0,0,12],[5,0,0,0,12,0,0,0,5],[0,9,0,0,0,9,9,0,0],[12,0,0,0,0,4,0,10,0] >;

C3×C42⋊S3 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes S_3
% in TeX

G:=Group("C3xC4^2:S3");
// GroupNames label

G:=SmallGroup(288,397);
// by ID

G=gap.SmallGroup(288,397);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,254,1011,185,360,634,1173,102,9077,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=c,d*c*d^-1=b^-1*c^-1,e*c*e=b,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3×C42⋊S3 in TeX
Character table of C3×C42⋊S3 in TeX

׿
×
𝔽